

Phase Analysis of Sweeping Probe Data using the Hilbert Transform

Valentin Skoutnev Dr. Yevgeny Raitses Eduardo Rodriguez

Purpose & Outline

(a) Purpose

- 1. Describe application of Hilbert transform for analyzing sweeping probe data
- 2. Highlight when HT is useful, along with its restrictions

(b) Outline

- 1. Background on Hilbert transform
- 2. Implementation in practice
- 3. Example with measuring spoke oscillations
- 4. Conclude

Background: The Hilbert transform (1/2)

• The Hilbert transform H[n(t)] of a real time series n(t) is chosen such that when

$$S_n(t) = n(t) + iH[n(t)] = A_n(t)e^{i\theta_n(t)}$$

is analytically continued into the complex plane, $A_n(t)$ corresponds to the slow varying envelope and $\theta_n(t)$ to the fast varying instantaneous phase

• Advantage over Fourier transform is that it can track a non-stationary signal

Background: The Hilbert transform (2/2)

• For example, one would want a pure cosine mode to transform into:

$$cos(\omega t) + iH[cos(\omega t)] = e^{i\omega t}$$

• This motivates rotating every Fourier component by $-\pi/2$. i.e.

$$F(H(n))(\omega) = -i\operatorname{sgn}(\omega)F(n)(\omega)$$

• Which, by the convolution theorem, gives the formal Hilbert transform:

$$H(n(t)) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{n(\tau)}{t - \tau} d\tau$$

Implementation in Practice

Given several discrete time series $\{n_1(t), n_2(t), ...\}$, multiple probes or different plasma parameters:

- 1. Bandpass filter each around the oscillatory mode of interest
 - (a) Meaningful HT requires a dominant mode
- 2. Apply HT to each
 - (a) $n(t) \to \text{FFT} \to \text{Multiplication by } -i \operatorname{sgn}(\omega) \to i \text{FFT} = \operatorname{H}(n(t))$
- 3. Extract A(t), $\theta(t)$ from each
 - (a) $A(t) = \sqrt{n(t)^2 + H(n(t))^2}$
 - (b) $\theta(t) = \arctan(\frac{H(n(t))}{n(t)})$
- 4. Analysis, several options:
 - (a) Study time dependent phase differences (e.g. $\theta_2(t) \theta_1(t)$ between multiple probes or different plasma parameters)
 - (b) Study relative amplitude growths
 - (c) Make a phase plot; bin all time series by phase of chosen reference time series

Application to Sweeping Probe Data (1/2)

Fast Sweeping Probe Time Series Inside a Spoke

Instantaneous Phases

Application to Sweeping Probe Data (2/2)

- 1. Phase plot (left) result of binning by the instantaneous phase of the density
- 2. Using azimuthal variation of potential, can estimate cross-field current

$$I_a = \langle env_{E \times B} \rangle 2\pi RL = -\frac{e\pi L}{B} \delta n \delta V sin(\theta_{\delta n, \delta V})$$

3. Using phase plot data $I_a = 0.4A$, which is 33% of the discharge current (1.2A) during this experiment.

Summary & Conclusion

- (a) HT can be used for non-stationary signal analysis
 - 1. Measure time variation of the amplitude and phase of a non-stationary signal
 - 2. Analyze instantaneous phase differences between signals (between multiple probes, different plasma parameters)
- (b) HT restricted to analyzing a single, dominant mode
 - 1. Bandpass filter signal, may be tricky with several modes present or if dominant frequency is varying significantly
 - 2. Amenable to breathing modes, spoke oscillations

Langmuir Probe Measurements of Spoke Oscillations

Parameter	Value	Parameter	Value
Р	$0.1\text{-}10\mathrm{mTorr}$	n_e	10^{10} - 10^{12} cm $^{-3}$
T_e	4eV	В	10-150G
$\omega_{pi}/2\pi$	2MHz	$ ho_g$	$1 \mathrm{mm}$
λ_D	$0.1 \mathrm{mm}$	λ_{n-e}	$50\mathrm{cm}$

- Azimuthal spoke oscillations (~4kHz) occur at low pressure
- A cylindrical, tungsten Langmuir probe of diameter 0.1mm, length 3mm is placed across magnetic field
- LP swept at 50kHz measuring density, plasma potential, and temperature.

